Joksimović, S., Kovanović, V., Jovanović, J., Zouaq, A., Gašević, D., & Hatala, M.
Proceedings of the Fifth International Conference on Learning Analytics and Knowledge (LAK'15), March 16-20, 2015, Poughkeepsie, NY, USA, Pages 64-68, ACM, New York, NY, USA.
Publication year: 2015

Abstract

Creating meaning from a wide variety of available information and being able to choose what to learn are highly relevant skills for learning in a connectivist setting. In this work, various approaches have been utilized to gain insights into learning processes occurring within a network of learners and understand the factors that shape learners’ interests and the topics to which learners devote a significant attention. This study combines different methods to develop a scalable analytic approach for a comprehensive analysis of learners’ discourse in a connectivist massive open online course (cMOOC). By linking techniques for semantic annotation and graph analysis with a qualitative analysis of learner-generated discourse, we examined how social media platforms (blogs, Twitter, and Facebook) and course recommendations influence content creation and topics discussed within a cMOOC. Our findings indicate that learners tend to focus on several prominent topics that emerge very quickly in the course. They maintain that focus, with some exceptions, throughout the course, regardless of readings suggested by the instructor. Moreover, the topics discussed across different social media differ, which can likely be attributed to the affordances of different media. Finally, our results indicate a relatively low level of cohesion in the topics discussed which might be an indicator of a diversity of the conceptual coverage discussed by the course participants.

Share: